

LA-UR-14-26167

Approved for public release; distribution is unlimited.

Title: Understanding Host Pathogen Interactions: a Foundation for Advanced

Therapeutics

Author(s): Ribeiro, Ruy Miguel

Intended for: "Advanced Therapeutics" deep dive to be held at the Study Center

at LANL on 08/05/2014

Issued: 2014-08-04

Understanding Host Pathogen Interactions: a Foundation for Advanced Therapeutics

Why "host-pathogen interactions"?

- We need new antibacterial / antiviral compounds
 - New threats
 - Resistance
- In the post-genomics era we can rationally target key hostpathogen pathways
- Potential for broad spectrum
 - Phylogenetically related, emergent threats

Why LANL?

- Scientific and technological foundation
- Capability for multidisciplinary approach
 - From screening to modeling
- Capability for a sustained effort
- Basic science problem
 - Initially, too hard for "private companies"

LANL Science / Technology Foundation

- Technology: development and use
 - Automation
 - High throughput
 - State-of-the-art assays
- Science
 - Bacterial pathogenicity
 - Innate immunity
 - Identifying new host-pathogen interactions
 - Modeling: from statistics to bioinformatics to mechanistic models

A few examples

A few examples

Influenza

Burkholderia

Protein-Protein Interactions

- Are involved in multiple pathogenic pathways
 - Cleavage of pathogen proteins (e.g., influenza)
 - Toxin effects (e.g., B. anthracis)
 - Disruption of innate immunity (e.g., influenza, HCV, ...)
 - Promote cell entry (e.g., Burkholderia spp)

Influenza A NS1 effector/host biology

- NS1 disrupts innate immune responses
- NS1 interacts with multiple host proteins
 - Binds p85β/p110 complex and limits apoptosis

Tracking interactions: tripartite GFP

Cabantous S. et. al, 2013 Sci Rep 3, doi:10.1038/srep02854

- Attach small 15aa tags to proteins (GFP strands 10 and 11)
- Interaction status is polled by expressing GFP 1-9
- Extensively engineered to not perturb passenger proteins

Proof of principle

- NS1 interacts with p85β but not p85α
- A single point mutation (M582V) converts p85α into an NS1 interactor: gain-of-function mutation
- A single point mutation (Y89F) converts NS1 into a non-interactor
- Can we detect these small sequence changes?

GFP based assay

Advantages of tripartite split GFP

- Small tags: minimize disruption of protein function
- High sensitivity
- Applicable in vivo
- Soluble, not temperature dependent
- Spatial resolution

Disrupting host pathogen interactions

Direct visualization of crucial interactions for pathogen survival / virulence

Disrupting host pathogen interactions

Direct visualization of crucial interactions for pathogen survival / virulence

- Use RNA interference to knock down mRNA expression of target genes
- Target all genes (whole genome) or given pathway
- Measure effect of host mRNA knock down on viability / replication of pathogen

RNAi-based screen of B. thailandensis invasion

siRNA library for kinases Targeting 782 kinases with >2500 siRNA constructs

Gene knock-down in the host

RNAi screen hits

Actin polymer- ization	Centrosome/ spindle function Mitosis	Ca2+/Cal modulin	PKC / cAMP	PIP	Glyco- genesis	RTK	Adhesion	NF-kB signaling
PAK3 STK35 PKN3 AKT2 STK11	AURKC, AURKA MAST3 UHMK1 STK22D, STK4 STK38L/NDR1	CAMK2B CAMK2A CAMK1G CALM1 CAMKK2	PKCη PRKACB	P101-PI3K ITPKA PIK3R1 PIP5KIA PIP5K2B AKT1	INSRR PCK1 HK1 HK2 HK3	KDR EPHA3 EPHB3 TYRO3 ERBB3	PTK7 ABL1	MAP2K7 MAP3K2 MAP3K11 MAPK6

- Identified ~40 host genes required for entry and intracellular growth of B. thailandensis
- Candidate genes classified into multiple interconnected host pathways –
 some common to infections with other pathogens (e.g. ABL1, AKT1)
- Validate candidate hits using imaging flow cytometry and microscopy

Validation using Imaging flow cytometry

THP-siRNA-Control

THP-siRNA-MAP3K11

THP-siRNA PIP5KIA

Labeling extra vs intracellular B. thailandensis

PKCη probably acts through MARCKS

PKCη – Protein kinase C-eta

- Regulated by diacylglycerol and phosphatidylserine, but not calcium
- Previously implicated in *Listeria* and Plasmodium infection

MARCKS - myristoylated alanine-rich protein kinase C substrate

- An actin filament crosslinking protein
- Cell motility, phagocytosis, membrane trafficking and mitogenesis

Conclusions

- We have identified ~40 kinases that regulate Burkholderia invasion in the host.
- Small molecules that are FDA approved for cancer treatment can be repurposed / tested as antimicrobials
- We have applied the same ideas to an extracellular pathogen
 - Yersinia spp: BMC Microbiology 2013, 13:249

Host-pathogen metabolic interactions

Different influenza strains will produce individual response profiles

Different influenza strains will produce individual response profiles

- Primary human upper airway epithelial cells
- H5N1: A/HK/483/97 high pathogenic (HP) and A/HK/486/97 low pathogenic (LP) H5N1
- H1N1: A/Beijing/26/95; H3N2: A/Sydney/5/97
- Whole genome microarray
- 36 experiments: 4 strains, 3 time points, 3 repeats for each.
 44,000 data points each experiment.

IL-6 mediated signaling network (24h)

H1N1 (Beijing): Cell to cell signaling, cellular interactions, and endocytosis

Validation (e.g., viral sensors pathways)

More expressed in H3N2 than in H1N1

Modeling infection at the host scale

Host pathogen interactions can also occur at other scales: co-infection

Mouse model of influenza infection

Intranasal infection

Fits to influenza infection in mice

$$\frac{dT}{dt} = -\beta TV$$

$$\frac{dI_1}{dt} = \beta TV - kI_1$$

$$\frac{dI_2}{dt} = kI_1 - \delta I_2$$

$$\frac{dV}{dt} = pI_2 - cV$$

Effect of bacterial co-infection on titers

All mice euthanized

Modeling possible mechanisms

Model fits: PR8 and S. pneumonia

Smith et al., PLoS Path. 9: e1003238 (2013)

Results

Effect	Consequences	Hypothesis			
Alveolar Macrophage Dysfunction	Decreased phagocytic ability, heterogeneity in individual lung titers, and loss of phagocytic cells and early innate immune signaling	Influenza-induces phenotypic changes and/or apoptosis in alveolar macrophages			
Enhanced Viral Release from Infected Cells	Rebound of viral titers and altered immune responses	Bacterial proteases and/or neuraminidases affect viral release from infected cells			

Recently shown to be a factor: Ghoneim et al. J. Immunol 2013

Future plans

Approach

- Focus on key pathogens and key pathways
- Multidisciplinary teams / external collaborators
- Develop predictive models to integrate multiple data streams

Topics

- Determine how a pathogen subverts or coopts host immune pathways to propagate its lifecycle
- Understand the immune modulatory effects of a pathogen
- Capture host responses at the pre-symptomatic stage

Example I - Burkholderia

Example II – hepatitis C virus

Cyclophilin A: regulator of translation

Impact

Targeting Burkholderia cellular invasion

